Tranilast prevents activation of transforming growth factor-beta system, leukocyte accumulation, and neointimal growth in porcine coronary arteries after stenting.
نویسندگان
چکیده
N(3,4-dimethoxycinnamoyl) anthranilic acid (tranilast) prevents the synchronous upregulation of isoforms and receptors of the transforming growth factor (TGF)-beta system after arterial injury and reduces restenosis after human coronary angioplasty. However, the effects of tranilast and the importance of the TGF-beta system in stent restenosis, in which inward remodeling is unimportant but inflammatory cell stimulation of neointima formation is exaggerated, are uncertain. Boston minipigs, treated with tranilast or vehicle, were subjected to endoluminal stenting, and the expression of TGF-beta1 and TGF-beta3, the expression of their signaling receptors ALK-5 and TbetaR-II, leukocyte numbers around the stent struts, and neointima development were assessed over 28 days. Stenting greatly increased early (5-day) mRNA expression of the 2 TGF-beta isoforms and their receptors. Immunohistochemical localization later showed that their concentrations were greatest in regions adjacent to stent struts, where leukocytes and collagen deposition were prevalent. Tranilast suppressed these elevations in TGF-beta mRNAs and reduced their immunoreactive peptides detectable around stent struts. The accumulation of leukocytes and deposition of collagen in these regions was also greatly inhibited by tranilast. These effects were associated with a 48% reduction in maximal neointimal cross-sectional area and 43% reduction in mean neointimal cross-sectional area at 28 days (P<0.05). We conclude that tranilast suppresses neointima development after stenting, effects that can be at least partly attributed to its ability to attenuate the induction of the TGF-beta system and leukocyte accumulation around stent struts.
منابع مشابه
Expression of transforming growth factor-beta1 (TGF-beta1) and urokinase-type plasminogen activator (u-PA) genes during arterial repair in the pig.
OBJECTIVE The transition from quiescence to proliferation in vitro is accompanied by early expression of proliferation-associated genes encoding products including cytokines and enzymes. We aimed to investigate TGF-beta1, u-PA and PAI-1 gene expressions in relation to proliferation and extracellular matrix (ECM) protein gene expressions in porcine arteries following injury. METHODS Right ilia...
متن کاملTranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-beta.
OBJECTIVE The pathological accumulation of extracellular matrix is a characteristic feature of diabetic cardiomyopathy that is directly related to a loss of function. Tranilast (n-[3,4-anthranilic acid), used for the treatment of fibrotic skin diseases, has also been shown to inhibit transforming growth factor-beta (TGF-beta)-induced matrix production in kidney epithelial cells. METHODS To in...
متن کاملInhibition of neointima formation by tranilast in pig coronary arteries after balloon angioplasty and stent implantation.
OBJECTIVES We evaluated the effect of orally administered tranilast, N-(3,4-dimethoxycinnamoyl) anthranilic acid, on histologic and histomorphometric changes after angioplasty or stent implantation in pig coronary arteries. BACKGROUND Tranilast, which has antikeloid and antiallergic properties and therefore may modulate the fibrotic and inflammatory tissue responses to angioplasty and stentin...
متن کاملGrowth factors stimulate neointimal cells in vitro and increase the thickness of the neointima formed at the neck of porcine aneurysms treated by embolization.
BACKGROUND AND PURPOSE Growth factors (GFs) may favor the healing of aneurysms treated with endovascular techniques by stimulating neointima formation. METHODS Bilateral carotid aneurysms were constructed with venous pouches in 50 pigs and embolized intraoperatively with collagen sponges with and without GFs (platelet-derived growth factor-BB [PDGF-BB] 0.15 or 1.5 microg or transforming growt...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2002